Entegra Release 9 Self Study Material "Advanced User" Course

14 Sep 2009 Version 1.0

Transition Training Block Agenda

Academics

- Modification Overview
- Architecture
- FMS features, short cuts, power user tips
- Map features
- Approaches
- Failure Modes
- FMS400 vs 900w
- Configurable Items

Module Objective

Assumption:

 You are already familiar with the basic tenets of R9 and have a grasp of the Entegra Release 9 Self Study Material "Basic User" Course

Objectives:

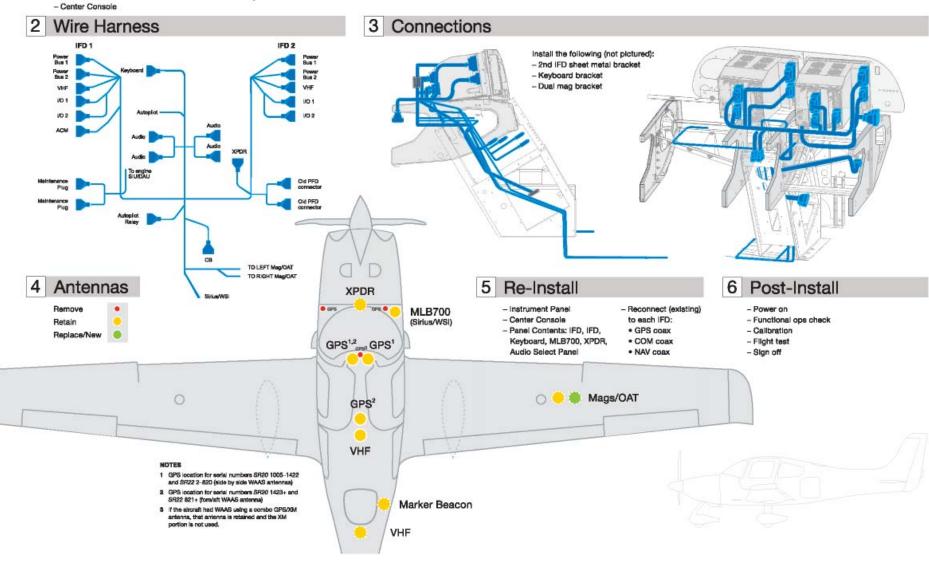
 Provides a deeper-dive self-study version for R9. By taking this course, you should be able to have a higher level of proficiency with R9 and be capable of using some of the more advanced features and in challenging IFR conditions

Note: This course is a copy of the slides used in live R9 transition training

Modification Overview

Modification Overview

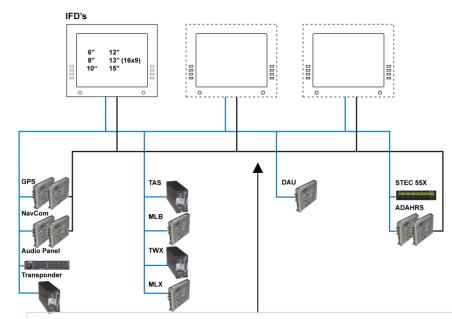
- 6-step process
 - Remove Instrument Panel, Center Console and "boxes"
 - Lay in pre-fab'd harness
 - Make all connections (maximum reuse of connectors)
 - Move/Add antennas
 - Pre-WAAS somewhat invasive antenna re-work
 - Post-WAAS trivial add of MLB antenna under glareshield
 - Re-install Instrument Panel, Center Console and "boxes"
 - Post install check-out
- The pre-fab'd harness that is installed leaves the existing airplane harness in place
 - Saves a lot of install time and complexity
 - Actually uses some of the original harness wiring and connections
 - As a result, this does add about 13 extra pounds



1 Removal

- Panel Contents: PFD, MFD, 430s, XPDR, Audio Select Panel, XM Receiver
- Instrument Panel

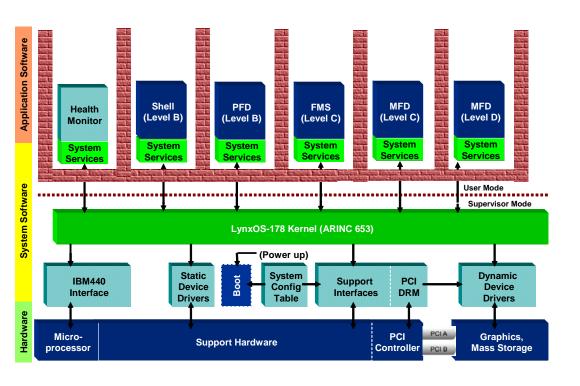
- · Sell removed 430 units
- · Return PFD, MFD, XM Receiver to Avidyne


R9 Architecture

Entegra Rel 9 Architecture and Databus

New Architecture for a New Era in Avionics

- Superior integration, high performance, low weight, modular and high growth potential
- True dual redundant, peer-to-peer databus design allows superior integration with a high performance, high authority autopilot and various other modular avionics components
- Databus advantages include:
 - · Allows display of more systems data
 - Lower weight and cost
 - Greater accuracy and update rates
 - Standardized, logical and consistent
 - Increased bandwidth
 - Shorter debugging time
 - Simplifies aircraft engineering and installation
 - Monitors avionics and aircraft system information
 - Event logging and system health messages prioritized
- No single point of failure, no need for diminished reversionary modes


- True Dual Databus Design
 - Reduced weight
 - Reduced wiring
 - Improved manufacturability and serviceability
 - Reduced install time
 - Lower overall cost of operation

Entegra Release 9 Software Architecture

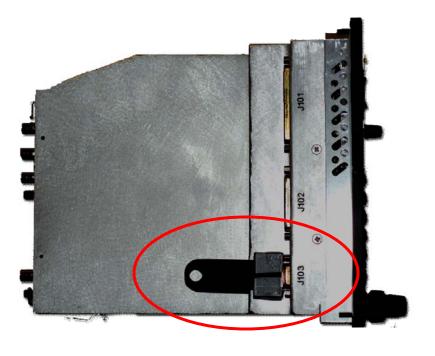
- Level A operating system with ARINC
 653 partitioning
- Entegra's software architecture is specifically designed to be robustly partitioned and promote the advantages of higher levels of integration without compromising safety by generating the unwanted side effects of failure propagation
- Entegra's partitioned software architecture provides the following advantages:
 - Higher reliability
 - Easier growth less retesting
 - Lower cost & lower schedule risk – systems integration, systems evolution, ICD develop / maintain and airplane level changes

Software / Operating System

This is the same architecture used by Honeywell and Collins in much bigger class aircraft

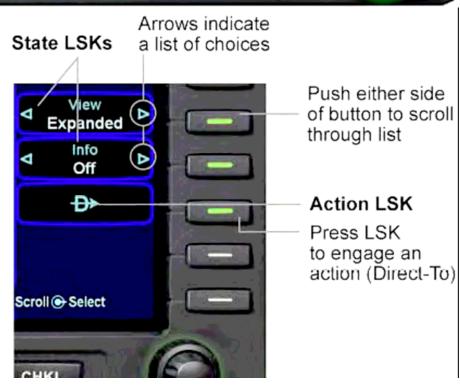
Entegra Release 9 Hardware Architecture

- Multiple Sizes and Form Factors
 - 6", 8", 10", 12", 15" displays
 - Integral chassis and Remote chassis
 - Provides customer/aircraft flexibility volume constraints, weight distribution considerations
 - Remote chassis no fans required
- Dozens of design improvements from 1st generation to 2nd generation
 - Based on 5+ years and thousands of units of field service history
 - Cabling
 - Backlighting
 - Serviceability access
 - Environmental monitoring
- LRU Concept
 - Each module (e.g. GPS, VHF, I/O, etc) are individual LRUs and can be removed and replaced without altering rest of unit
 - Supported by extensive on-board diagnostics
- Aircraft Configuration Modules
 - Display "personality" definition
 - Aircraft and User preferences retained in ACM
 - Stores calibration and service history



Aircraft Configuration Module (ACM)

- Stores all aircraft-specific avionics configuration information
- It plugs into the back of IFD and stays with the aircraft harnessing
- It was designed to significantly reduce the time to restore an aircraft to flight status following the removal/replacement/reconfiguration
- It also significantly reduces the likelihood of human error when trying to reconfigure a system following maintenance
- Calibrations, setup options, some pilot preferences and even some data logs are stored in the ACM



User Interface

Page and Tab

- Home Tabs
 - Press and hold center of page function key
- Persisted Tabs
 - Go away and come back to same
- Auto step Tabs
 - Press and hold left or right edge of page function key
- Line Select Keys
 - Individually addressable
 - Only useable LSKs lit up
 - Two main types
 - State vs Action keys

Backup Com Tuning

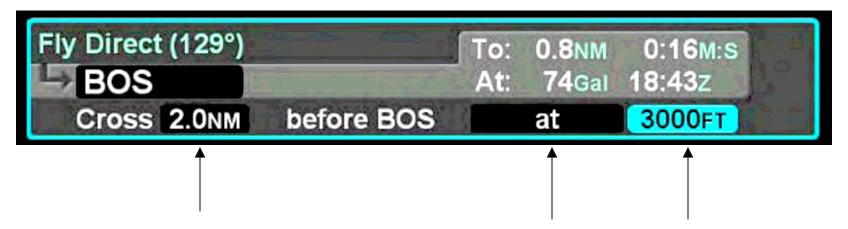
- Can use the IFDs to tune com radios if desired
 - Intended to be a backup capability, not primary method (use the keyboard for that)
- Use any datablock format page on MFD
- Left side LSKs and knob control tuning, flip-flop
- LSK L2 use to switch between Com and Nav controls
- Outer/Inner rings of left bezel knob to select desired frequency
- Pushing of LSKs L3 or L4 perform the flip-flop action
- Frequency just tuned is displayed in large font just above left bezel knob
 - Stays there until timeout or other action selected

Adding Departures to Flight Plan (FMS900w)

- As part of the flight plan building, published departures can be added and then automatically filled in
- Only applies to "Origin" waypoints
- Use the FMS knob to highlight the Departure field, then push in for a dropdown list of available departures
- Scroll up/down that list with the FMS knob, then push in to automatically load the desired departure into the flight plan

Adding Arrivals and Approaches (FMS900w)

- 2 methods to add arrivals and approaches to a flight plan
 - Press the PROC button on keyboard
 - Use the FMS knob to scroll up/down the flight plan and highlight the desired arrival or approach field
- PROC method:
 - Just keep pushing PROC key until the desired field presents dropdown list. Use FMS knob to scroll up/down list and push to select
- FMS knob method:
 - Use the FMS knob to scroll up/down list and push to select
- In both cases, once the FMS knob is pushed in, the flight plan automatically fills in the procedure



Adding a Vertical Constraint to a Waypoint

- Use the FMS knob to position the Edit Cursor over the desired field in a waypoint
- Push in the knob to put that field into edit mode
- Type or twist your desired value
- This will provide a:
 - Vertical Speed Required cue on the VSI
 - Visual depiction of the crossing constraint on the map
 - A top of descent cue on the map
- Vertical constraints are automatically added to approach waypoints with vertical constraints in the published procedure

Holding Operations

- Holds can be put on all waypoints except:
 - Legs that terminate at an altitude
 - Legs that terminate with a DME distance
 - Legs that terminate with radial crossings
- Use the FMS knob to create an edit cursor and push in to generate a drop list of available options
- Select "Hold at <waypoint name>" and push in again to select
- To edit a hold, position an edit cursor around the holding leg of interest
- Use the FMS knob to highlight the specific field and make the edit
 - Turn direction
 - Leg length
 - Leg units
 - Inbound leg course

Gaps and Discontinuities

- Sometimes the FMS cannot compute guidance between two points
 - Invalid leg type combination
- If the gap is not closed, the FMS cannot sequence to the next waypoint
- To close a gap, use the FMS knob to scroll up/down as required in the flight plan to place the edit surround cursor around the "Gap in Route" message. Then press the Connect LSK
 - Connects the two legs via a direct (straight) leg

Lateral Offsets

- Some techniques and reasons why:
 - Offset yourself from a busy airway centerline for personal traffic deconfliction
 - In theory, FAA may request/require you to fly an offset
 - Cheat a little closer to a coast line
 - Because you are a power user and you can (and it's simple)
- From the Flight Plan tab, press the "Offset Route" LSK
 - Cursor needs to be on active leg (magenta leg) to see LSK label
- Use the right hand bezel knob to dial in the desired offset
 - Outer knob is coarse control (1 nm increments)
 - Inner knob is fine control (0.1 nm increments)
 - Rotate knobs left for left offset and right for right offsets
- Will have to press the "Confirm Right/Left x.x NM" LSK
- To cease offset operations, press the "Delete Offset" LSK
- Max offset allowed is 20nm.

Use of Vectors Mode

- Provides a means to temporarily divert off of planned route
 - Think of the weather avoidance scenario
 - Use the power of datalink overlay and Vectors to effortlessly avoid the threat
 - Think of the airspace avoidance scenario
 - For example, skirt around the edge of a MOA or controlled airspace
- Also provides a means to respond to ATC vectors in the departure or terminal area
- No need to change flight plan at all!
- No need to change autopilot mode at all!
- Press the -V-> function key on the keyboard
- Spin the HDG knob on the keyboard
- Watch the dashed magenta line move and position it where you want
- Use the PFD L5 LSK to arm/disarm the intercept
 - Vectors to Localizer final but not cleared the approach

Keyboard Integration – Clearance Entry

Flight from Phoenix Sky Harbor to Kansas City

Keyboard Integration – Clearance Entry

Route

MAXXO1 ACH J231 LBL J134 ICT EMP JHAWK8

- Use "." or "Enter" between the procedure and the transition or between the airway and the exit leg
- Only enter enough characters to select the desired entry
 - Extra characters are OK, but not necessary
- 31 keystrokes for the above flight plan
 - <Enter>M.A<Enter>
 - <Enter>J2.L<Enter>
 - <Enter>J.I<Enter>
 - EMP<Enter>
 - KMC<Enter>
 - <Proc><Proc>J.E<Enter>

Quick Switch to Vectors-To-Final

- When an approach is already loaded with an IAF and you want to switch quickly to a vectors approach
 - <Proc> opens the approach dropdown
 - <Enter> selects the current approach
 - <Enter> selects vectors-to-final

Paste Identifier

- FMS watches the identifier of interest and allows it to be pasted in a future operation
 - Flight Plan Info
 - Nearest Info
- Example
 - Look up an identifier on Info page
 - Tab back to the flight plan page
 - Open insert dropdown and select "Waypoint"
 - Paste button on LSK R2 contains identifier from info page
 - Press to use that identifier

Direct-To

- Button available on LSK R4 of every FMS page
 - On-path
 - Works whether you think about identifier first or last
 - First move cursor to the leg, then press –D->
 - Last press –D-> then move cursor to desired identifier
 - Off-path
 - Keyboard entry enabled
 - GeoFill from present position
- Keyboard –D-> always available

Flight Plan Scrolling

- Outer knob "quick twist" causes the cursor to jump
 - Use scroll bar to determine relative position of active leg
 - Cursor above the active leg
 - CCW twist jumps to origin
 - CW twist jumps to active leg
 - Cursor below the active leg
 - CCW twist jumps to active leg
 - CW twist jumps to the destination

Knob press with cursor on a leg

- A hold is actually inserted <u>after</u> a leg, but some users think of it as being placed <u>on</u> a leg
 - Push knob while on a leg will automatically move the cursor down to an insert position and open the dropdown
 - Hold is available in that dropdown

Multiple Destinations

- A flight plan can contain more than one airport
- Approaches or arrivals can be placed on any airport in the flight plan at any time
 - Good way to pre-plan alternates
- Current destination is the first airport with an approach, arrival, or runway after the active leg

Cancel Vectors on Active Leg

- When –V-> is active, R1 on the Flight Plan page shows "Cancel Vectors"
 - "Offset" is available at the insert cursor position above the leg

Retry Approach

- LSK L5 on the PFD will show "Retry Approach" when:
 - Active leg is in the missed approach
 - The approach transition is vectors to final
- Why not available for published IAFs?
 - Because the aircraft is at low altitude, we don't want to automatically create a –D-> leg that could fly you into an obstacle
 - Technique for non-published missed:
 - Activate the leg to the IAF
 - Activate –V-> to intercept the desired leg of the approach
 - Technique for published missed
 - When established on the missed, -D-> the IAF

Hold Course Reversal

- If the course reversal is not necessary, that hold can be deleted
 - Position cursor on the hold, press "Delete Hold" on LSK R5
 - Only procedure leg that can be deleted.

Distance to VHF Navaid (DVN)

"Pseudo DME" function

- Computes terrestrial range, not slant range
- Range from current GPS position to the station position from the navigation database

Distance computed when:

- The tuned navaid identifier has been decoded by the radio
- The tuned navaid is a VOR, VORTAC, ILS/DME, VOR/DME
 - Identified as "VHF Navaid" in the nav database
 - Notice it is NOT required to have a DME component

Background Nav Radio Tuning

On Approach

- Nav1 tuned to the navaid defining final approach
- Before aircraft is on final, Nav2 tuned to
 - Active leg fix if it is a VHF Navaid (VOR, etc)
 - Recommended navaid for the active leg
- Once aircraft is on final Nav2 tuned to missed approach navaid

Departure, Enroute, Arrival

- Search forward and backward from active leg to find first leg with a recommended navaid or terminated by a VHF Navaid
- If the active leg has a recommended navaid, Nav1 is tuned to that and Nav2 is tuned to the backward navaid
- Otherwise, Nav1 is tuned to the closer of the two navaids and Nav2 is tuned to the other

Keyboard

- CLR key will perform a "Delete" function when applicable to the field highlighted by the cursor
 - On a leg, deletes the leg
 - On a field, clears the field
 - On a "Gap In Route" discontinuity, closes the gap

Clear the flight plan

- Go to the Routes tab
- Move cursor to the "Current Route" item
- Press LSK R5 to "Delete Current"
- System will switch to the flight plan tab

"Home" Keys

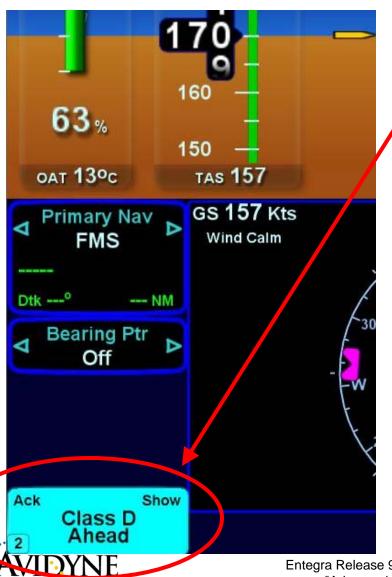
- Press and hold any of the bottom buttons to get to a known state in that subsystem
 - PFD Nav Display tab, Flight Plan On, CDI Off
 - FMS Flight plan tab, Expanded view, Info Off, Cursor around the active leg which is placed on the second line of the display
 - MAP Map+ tab, Lightning Off, Wx Reports METARs, Land Low, Nav Medium, Wx Overlay NOWrad
 - SYS Engine tab
 - Checklist first Emergency checklist tab
- Detailed definition in Pilot Guide, 1st page of Appendix D

Range to Altitude

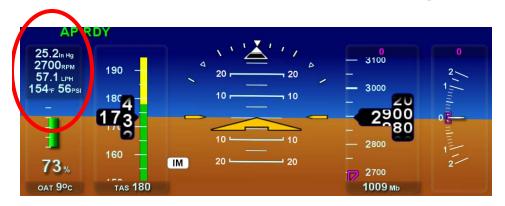
- Small green arc depicts the geographic point where, at the current vertical speed, the aircraft will reach the altitude target (Alt Bug value).
- Removed when current aircraft altitude is within 150' of target altitude
- No setup option to prevent this feature from displaying
- One technique is to use it to judge if current climb or descent rate will clear an airspace altitude "shelf" constraint (e.g. Class B altitude bands)

Top of Descent (TOD)

- Small green circle drawn on map indicates appropriate geographic location to start an enroute descent
- It needs to have a Destination defined in the flight plan and this destination needs to have an arrival or an approach as part of the flight plan before it can be computed
- How is it computed?
 - If there is a vertical constraint defined in the flight plan in any downpath waypoint, then it will use that vertical constraint as the target altitude and base it's computations on that
 - If there is no vertical constraint in any downpath waypoint in the flight plan, then it will use the destination elevation as the target altitude.
 - The rate of descent used for the calculation is a setup option on the FMS sub-tab of the Setup tab on the SYS page. Factory default rate-ofdescent is 500 fpm


Fuel Range Ring

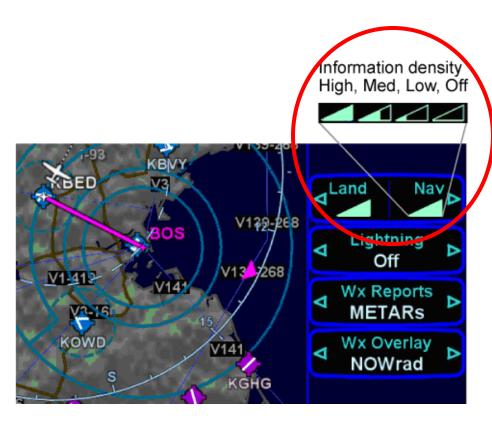
- Green fuel range ring shows max range of aircraft with a 45 min reserve
 - Dashed green = range leaving reserve
 - Solid green = range using the reserve
- Calculation is based on groundspeed (and therefore indirectly winds) and fuel totalizer value
- When only reserve fuel remains, the circle turns to yellow
- There is no setup option to turn these rings off
- Early software versions of R9 resulted in the fuel ring not being displayed at ranges or map declutter settings that did not show Special Use Airpaces (SUA)



Airspace Alerting

- CAS messages are provided to alert pilot to presence of controlled/restricted airspace
 - Class B, C, D, TCA
 - Restricted, Warning, ADIZ
- Based on 4-D trajectory
 - 5 min look-ahead
- Think of this as using the aircraft velocity vector to compute
 - As long as the 3-D vector does not clip any part of the controlled/restricted airspace, no alert will be issued
 - You can miss an "inverted wedding cake" shelf by 10 feet and never get an alert by design

Supplemental Engine Parameters on PFD



- Added in software release 9.0.2 in Sep '09
- Even though there is always monitoring going on behind the scenes of all engine parameters, some pilots want additional engine parameters on the PFD
- There is a setup page option to turn it on (factory default is off)
 - They are either all on or all off, not individually selectable
- Normally aspirated pistons will display:
 - Manifold Pressure
 - RPM
 - Fuel Flow
 - Oil Temperature
 - Oil Pressure

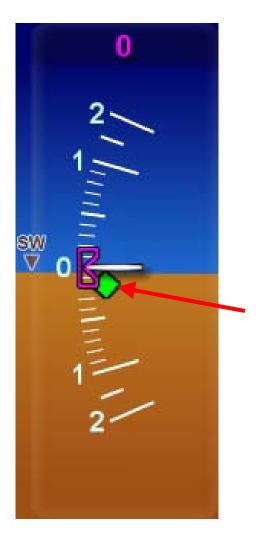
Self Study Material
"Advanced User" Course

Map Declutter Settings

- Declutter triangle concept is still the same but it's been broken out into two types:
 - Land declutter.....
 - Terrain
 - Political boundaries
 - Rivers/Lakes/Oceans
 - Roads
 - Nav declutter.....
 - Airspace
 - Victor/Jet airways
 - Obstacles
 - Navaids
- Each IFD can be individually controlled
- 4 levels
 - High, Medium, Low, Off

Map Setup

- Access this page via the SYS key, Setup tab and cycle through the R5 Setup LSK until "Map" is displayed
- Can individually adjust most fields to create a custom declutter setting or use the R3 Default LSK to select:
 - Factory
 - IFR
 - VFR
 - Custom



"Etch-a-Sketch" mode

- This is a combination of using the FMS Course Function and Vectors mode
- Using the active waypoint in the flight plan, the FMS Course Function knob (left bezel knob on left IFD with Primary Nav = FMS) can be used to select the desired inbound/outbound course from the waypoint
- At the same time, or right after the desired FMS course has been set, use the Vectors control ("Heading" knob on keyboard when the "-V->" button is active) to chose the desired intercept point to that FMS course line
- Since you can use the two knobs simultaneously and the entries are displayed in a graphical manner, it does feel like you are using a Etch-a-Sketch toy
- But, once you see this function in action, you can see the power of it

Vertical Speed Required (VSR)

- Green diamond is drawn on the VSI scale to indicate the target vertical speed as computed by the FMS to make the next vertical constraint in the flight plan
- The shape is such that the point of the diamond touches the VSI scale at the target VSI and will perfectly fill the notch in the VSI Bug depiction
- A common technique is to dial the VSI bug so that the VSR diamond fits into the notch and press VS on the autopilot
- The VSI bug will not automatically couple itself to the VSR diamond – this is a manual dial mode
- If there is no vertical constraint in the flight plan, there will be no VSR displayed on the VSI scale

"Proc" button on Keyboard

Update this shot to show proc list on KB display and PROC key lit in green

- Use it as a shortcut to attach a published arrival or approach procedure to a waypoint in the flight plan
- 1st press → MFD displays Flight Plan tab of FMS page with the Approach field of the next destination after current leg highlighted in reverse video, and a dropdown box of available published approaches listed
- 2nd press → Steps the reverse video over the Arrival field and presents a drop down list of available choices
- All subsequent presses → Steps through all following destination airfields approaches and arrivals until it wraps back around to top of flight plan
- Use the FMS knob on keyboard (or right hand knob on IFD) to scroll through the list of choices and push in on desired choice
- If no flight plan in the FMS, pressing PROC will present the Flight Plan tab on MFD with insert cursor at top of the page
- Only truly functional for FMS900w systems

Info Tab of FMS

- The center and lower panes on this tab will change based on what is selected in the "Show" LSK
 - LSK choices are:
 - Frequencies
 - Example shown in figure
 - Weather
 - METAR
 - Winds Aloft
 - Temps Aloft
 - TAF
 - Runway
 - Lists all Rwy data
 - Calculator
 - Sunrise/Sunset
 - Density Altitude
- Use a combo of outer and inner rings of right bezel knob to scroll through the fields and make choices
- Can also just type in a new identifier on keyboard at any time

Backcourse Operations

- If you've selected the published Backcourse approach from the list of available approach options for the destination in the FMS, then the rest of the operation is automatic
 - Primary Navigation (LSK L1) = Nav1 or Nav2
 - Front course value is set in the left IFD via the left knob
- When the FMS has determined that it is established on the back course localizer, the HDI on the bottom edge of the PFD ADI indicates "LOC BCRS"
 - Both the HDI and CDI will display correct sensing
- For autopilot-coupled approaches, the REV button will need to be pressed for the autopilot to turn in the correct direction

ILS Approaches in R9

- Criteria here applies to ILS, LOC, LDA, SDF
- R9 will automatically switch from FMS to Nav1 (VHF Nav) when "established"
 - Within 1 dot deviation and within 45 degrees course deviation (intercept) for 5 seconds prior to changing
 - This also applies to the autopilot
 - If the above criteria are met, R9 will automatically engage NAV/APR and GS on the autopilot
 - GS will arm if in ALT mode and driving into glide slope from below

VOR Approaches in R9

- VOR approaches require manual intervention
- Typical Techniques:
 - Ensure approach is loaded in the FMS
 - Manually select NAV on autopilot, no GPSS, OR
 - Fly in NAV GPSS on the autopilot with Primary Nav = Nav1 inside the FAF
 - Primary Nav switch to Nav1 is <u>not</u> automatic
 - Primary Nav <u>will</u> automatically switch back to FMS when passing the MAP

WAAS Precision Approaches in R9

- R9 will fly a published WAAS Precision approach (LPV) just like an ILS and will do so coupled to the autopilot under the following criteria:
 - Established within 1 dot deviation and within 15 degrees course deviation (intercept) for 5 seconds
 - Primary Nav source stays as FMS
 - Autopilot will automatically switch to NAV/APR mode and arm the GS under the conditions listed above
 - ALT mode will need to be active to arm the GS mode

Non-Precision GPS Approaches in R9

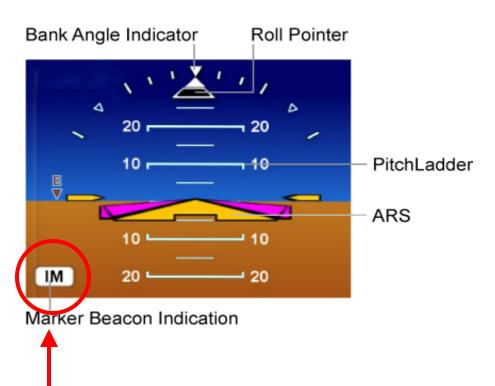
- R9 supports the following non-precision GPS approaches:
 - LNAV
 - Manually select NAV-GPSS and VS on the autopilot to fly this type of approach
 - LNAV + V
 - Can manually couple to the autopilot
 - Vertical guidance does not take into account any step down fixes or potential obstacles (hence the manual coupling)
 - LNAV/VNAV
 - Automatic coupling to the autopilot is similar to LPV approaches
 - The only real difference between LPV and LNAV/VNAV operationally is the tolerances on the approach. Rel 9 treat them the same

Warmstart

- If an IFD was fully aligned and then experienced a power loss of up to 30 seconds, when power is restored, the IFD will enter warmstart mode
- A message is displayed on the ADI as follows:
 - PLEASE STANDBY 2 seconds
 - ATTEMPTING QUICK RESTART –
 10 second countdown
- No need to limit dynamic maneuvering during warmstart attempt
- 2 unsuccessful warmstarts in a row will result in a full alignment attempt

Fast Erect

- Typically a recoverable ADAHRS anomaly
- In a dual ADAHRS system, this may be invisible to the pilot aside from an automatic switch to the offside ADAHRS
- In a single ADAHRS system or if the ADAHRS source selection is not Auto, then the following indications are presented:
 - All normal buttons labels on the PFD is removed
 - Attitude data removed and replaced with Red-X
 - A "Start Fast Erect" button label and message box appears
- Be sure you are in straight and level attitude before pressing
- After pressing, a 10 sec countdown is presented and at the end of that time, attitude will be displayed


Crosscheck Attitude

- Each ADAHRS is constantly monitoring itself
- Triggers for this alert require a higher level of vigilance but do not warrant removal of the data and are not necessarily indicative of a hardware or software failure
- If equipped with dual ADAHRS and the source selection is set to Auto, the system will automatically switch to display the off-side ADAHRS data and not present a Crosscheck Attitude message
- If equipped with single ADAHRS, or the source selection is set to 1 or 2, a "CROSSCHECK ATTITUDE" message is displayed on the ADI
- If the message is presented, be sure to perform a disciplined crosscheck of the cockpit standby instruments

Marker Beacon

- Only displayed on the ADI when aircraft is equipped with a PS Engineering Audio Select Panel
- The lamps will display on both the Audio Select Panel and the PFD
- Outer Markers, Middle Markers, Inner Markers and Airway
 Markers are all capable of being displayed
 - Airway markers display as "IM"

PS Engineering Audio Panel Techniques

- Use MON1 or MON2 to monitor other frequencies without having to put them into the active freq of either radio
 - The monitor function lets you listen to whatever freq is in the standby freq of the radio (MON1 = COM1 Standby, MON2 = COM2 Standby)
 - Put ATIS/AWOS/ASOS into MON2 and monitor it as required
 - Put 121.5 into MON2 and monitor during cross country legs
 - Etc
 - Use the Monitor button on the PS Engineering panel to "toggle" the monitor on/off
- Volume control for the Monitor "channels" are on the SYS page function, AUDIO tab (SYS-AUDIO)

Power Outage Scenarios

- All equipment required for IFR flight remains fully IFR capable indefinitely when only Alt2 remains
 - With discretion with the use of Pitot Heat, landing lights and TKS, a pilot can easily fly longer and retain sensors, transponder, flaps, and trim for landing at destination
- R9 can run indefinitely on combined Alt2/Bat2 supply
 - Alt2/Bat2 also powers the autopilot
- With the loss of Alt1, the audio panel will only operate as long as Bat1 lasts
- Life of Bat1 can be extended by pulling one of two circuit breakers from IFD1 and IFD2
 - By specifically pulling the IFD CB that comes from the Main Bus, the life of Bat1 will be extended
- R9 FAQs on the <u>www.release9.com</u> website provides more test results for some scenario based tests

FMS900w vs. FMS400

- They are the same FMS with the following differences:
 - FMS400 does not have any WAAS precision approach capability
 - FMS400 approach drop down list will not include any precision WAAS approach options
 - There is no need to equip the aircraft with WAAS-capable antennas
 - FMS400 does not support airway navigation as part of FMS flight plan drop down lists
 - This means each waypoint/intersection of an airway must be typed into the flight plan (but Geofill still makes this very easy)
 - FMS400 does not support factory enabled Arrivals and Departures
 - In this configuration, there is no ability to create drop down lists to select published arrivals or departures to airfield
 - Lack of selecting published arrivals, approaches and departures from an airfield means that the keyboard PROC key has no real use
 - The Setup Main tabs of the SYS page will display which FMS is loaded in the IFD

Items or Features that can be "turned off"

- PFD Timer
 - Use Setup Display tab
- HSI CDI
 - CDI on/off LSK on PFD pages
- Flight Plan overlay on HSI
 - Flt Plan on/off LSK on PFD pages
- Bearing Pointer overlay on HSI
 - "Off" selection in Bearing Ptr LSK
- PFD Heading Horizon Tick Marks
 - Use Setup Display tab
- Altitude Alerting
 - Use Setup Display tab
- Labeled Vspeeds on ADI
 - Use Setup Display tab
- Most map features
 - Use the Declutter triangles on Map pages
- Extra 55X autopilot annunciators
 - Use Setup Display tab

- Trim in motion annunciator.
 - Use Setup Display tab
- Switch Tanks Alert message
 - Use Setup Display tab
- Supplemental Engine data on PFD
 - Use Setup Display tab
- Victor and Jet airways in FMS dropdowns
 - Use Setup FMS tab
- Arrivals and Departures in FMS dropdowns
 - Use Setup FMS tab
- Map page compass rose
 - Use Setup Map tab
- Use of Altitude filter on Map declutter settings
 - Use Setup Map tab

